Please login to be able to save your searches and receive alerts for new content matching your search criteria.
There are several well-known characterizations of the sphere as a regular surface in the Euclidean space. On the contrary, there are not so many characterizations of the hyperbolic space, the spacelike sphere in the Minkowski space. By means of a purely synthetic technique, we get a rigidity result for the sphere in 𝔼n+1 without any curvature conditions, nor completeness or compactness, as well as a dual result for the n-dimensional hyperbolic space in 𝕃n+1.
There are two smooth functions σ and ρ associated to a nontrivial concircular vector field v on a connected Riemannian manifold (M,g), called potential function and connecting function. In this paper, we show that presence of a timelike nontrivial concircular vector field influences the geometry of generalized Robertson–Walker space-times. We use a timelike concircular vector field v on an n -dimensional connected conformally flat Lorentzian manifold, n>2, to find a characterization of generalized Robertson–Walker space-time with fibers Einstein manifolds. It is interesting to note that for n=4 the concircular vector field annihilates energy-momentum tensor and also that in this case the potential function σ is harmonic. In the second part of this paper, we show that presence of a nontrivial concircular vector field v with connecting function ρ on a complete and connected n -dimensional conformally flat Riemannian manifold (M,g), n>2, with Ricci curvature Ric(v,v) non-negative, satisfying n(n−1)ρ+τ=0, is necessary and sufficient for (M,g) to be isometric to either a sphere Sn(c) or to the Euclidean space En, where τ is the scalar curvature.