We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods to produce unitary representations of the braid groups that are dense in the unitary groups. The simplest case of these models is the Fibonacci model, itself universal for quantum computation. We here formulate these braid group representations in a form suitable for computation and algebraic work. In particular, we give quantum algorithms for computing colored Jones polynomials and the Witten-Reshetikhin-Turaev invariant of three-manifolds.