In this work, the Dirac–Kratzer problem with spin and pseudo-spin symmetries in a deformed nucleus is analyzed. Thus, the Dirac equation in curved space–time was considered, with a line element given by ds2=(1+α2U(r))2(dt2−dr2)−r2d𝜃2−r2sin2𝜃dϕ2, where U(r) is a scalar potential, coupled to vector V(r) and tensor A(r) potentials. Defining the vector and scalar potentials of the Kratzer type and the tensor potential given by a term centrifugal-type term plus a term cubic singular at the origin, we obtain the Dirac spinor in a quasi-exact way and the eigenenergies numerically for the spin and pseudo-spin symmetries, so that these symmetries are removed due to the coupling of an Coulomb-type effective tensor potential coming from the curvature of space, however, when such potential is null the symmetries return. The probability densities were analyzed using graphs to compare the behavior of the system with and without spin and pseudo-spin symmetries.