Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SPIN IN CARBON NANOTUBE-BASED OSCILLATORS

    In this paper, molecular dynamics simulations are performed on a [10, 10]/[5, 5] carbon nanotube-based oscillator. In our work, we observed a spin phenomenon of the inner tube when it oscillated in an isolated oscillator system. If there exist a rocking motion when the inner tube started to oscillate, an axial torque would be observed, and it would drive the inner tube to spin. When the oscillation became stable, the torque almost vanished, and the spin was stabilized with a constant frequency of 21.78 GHz. Such a spin phenomenon was also observed when the oscillator system was at a room temperature of 300 K. However, both magnitude and direction of the spin angular velocity varied from time to time, even after the oscillation of the inner tube stopped due to the energy dissipation.

  • articleNo Access

    2D ANOMALOUS MAGNETORESISTANCE IN THE PRESENCE OF SPIN–ORBIT SCATTERING

    The model of weak localization in 2D semiconductor structures in the whole range of classically weak magnetic fields in the presence of the Elliot–Yafet spin relaxation has been developed. It was shown that the spin–orbit interaction influences the value of magnetoresistance in small magnetic fields (within diffusion approximation) and when diffusion approximation is no longer valid.