Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Passing through a stack k times

    We consider the number of passes a permutation needs to take through a stack if we only pop the appropriate output values and start over with the remaining entries in their original order. We define a permutation π to be k-pass sortable if π is sortable using k passes through the stack. Permutations that are 1-pass sortable are simply the stack sortable permutations as defined by Knuth. We define the permutation class of 2-pass sortable permutations in terms of their basis. We also show all k-pass sortable classes have finite bases by giving bounds on the length of a basis element of the permutation class for any positive integer k. Finally, we define the notion of tier of a permutation π to be the minimum number of passes after the first pass required to sort π. We then give a bijection between the class of permutations of tier t and a collection of integer sequences studied by Parker [The combinatorics of functional composition and inversion, PhD thesis, Brandeis University (1993)]. This gives an exact enumeration of tier t permutations of a given length and thus an exact enumeration for the class of (t+1)-pass sortable permutations. Finally, we give a new derivation for the generating function in [S. Parker, The combinatorics of functional composition and inversion, PhD thesis, Brandeis University (1993)] and an explicit formula for the coefficients.