Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Spectral and mathematical evaluation of electromyography signals for clinical use

    The surface electromyography (SEMG) is a complicated biomedical signal, generated during voluntary or involuntary muscle activities and these muscle activities are always controlled by the nervous system. In this paper, the processing and analysis of SEMG signals at multiple muscle points for different operations were carried out. Myoelectric signals were detected using designed acquisition setup which consists of an instrumentation amplifier, filter circuit, an amplifier with gain adjustment. Further, Labview-based data programming code was used to record SEMG signals for independent activities. The whole system consists of bipolar noninvasive electrodes, signal acquisition protocols and signal conditioning at different levels. This work uses recorded SEMG signals generated by biceps and triceps muscles for four different arm activities. Feature extraction was done on the recorded signal for investigating the voluntary muscular contraction relationship for exercising statistic measured index method to evaluate distance between two independent groups by directly addressing the quality of signal in separability class for different arm movements. Thereafter repeated factorial analysis of variance technique was implemented to evaluate the effectiveness of processed signal. From these results, it demonstrates that the proposed method can be used as SEMG feature evaluation index.