Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    STATISTICAL FUZZY CONVERGENCE

    The goal of this work is the further development of neoclassical analysis, which extends the scope and results of the classical mathematical analysis by applying fuzzy logic to conventional mathematical objects, such as functions, sequences, and series. This allows us to reflect and model vagueness and uncertainty of our knowledge, which results from imprecision of measurement and inaccuracy of computation. Basing on the theory of fuzzy limits, we develop the structure of statistical fuzzy convergence and study its properties. Relations between statistical fuzzy convergence and fuzzy convergence are considered in the First Subsequence Theorem and the First Reduction Theorem. Algebraic structures of statistical fuzzy limits are described in the Linearity Theorem. Topological structures of statistical fuzzy limits are described in the Limit Set Theorem and Limit Fuzzy Set theorems. Relations between statistical convergence, statistical fuzzy convergence, ergodic systems, fuzzy convergence and convergence of statistical characteristics, such as the mean (average), and standard deviation, are studied in Secs. 2 and 4. Introduced constructions and obtained results open new directions for further research that are considered in the Conclusion.

  • articleNo Access

    Kappa Regression: An Alternative to Logistic Regression

    In this study, a new regression method called Kappa regression is introduced to model conditional probabilities. The regression function is based on Dombi’s Kappa function, which is well known in fuzzy theory. Here, we discuss how the Kappa function relates to the Logistic function as well as how it can be used to approximate the Logistic function. We introduce the so-called Generalized Kappa Differential Equation and show that both the Kappa and the Logistic functions can be derived from it. Kappa regression, like binary Logistic regression, models the conditional probability of the event that a dichotomous random variable takes a particular value at a given value of an explanatory variable. This new regression method may be viewed as an alternative to binary Logistic regression, but while in binary Logistic regression the explanatory variable is defined over the entire Euclidean space, in the Kappa regression model the predictor variable is defined over a bounded subset of the Euclidean space. We will also show that asymptotic Kappa regression is Logistic regression. The advantages of this novel method are demonstrated by means of an example, and afterwards some implications are discussed.

  • articleNo Access

    GUEST EDITOR'S INTRODUCTION

    I will make an argument of who will benefit from this special issue on data science and related topics.

  • chapterNo Access

    Using Statistics for Quality Management in the Library

    In the light of the ever changing and developing technology in the libraries, library managers across the sector and all over the world need to utilize all possible means of ensuring that the quality of services remains optimal. This paper shows some of the uses of different evaluation tools in an academic library. The paper will describe the practical use of surveys, larger and smaller, questionnaires, focus groups and stake holder meetings, all of which will yield different kinds of data. As part of quality management, the practical uses of this data will be explored.