Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    A novel technology to produce microalgae biomass as feedstock for biofuel, food, feed and more

    TECHNOLOGY01 Jun 2015

    While microalgae oil was perceived as the preferred feedstock to supply the inelastic global demand for biofuel, industry and academia attempts to create viable microalgae-oil production processes has not reach the desired goal yet. UniVerve Ltd. has developed an innovative technological process that provides a scalable, cost effective and sustainable solution for the production of microalgae-biomass. The oil, which can be extracted with off-the-shelf wet-extraction technologies and used as an excellent feedstock for all kinds of biofuel, is expected to be produced at up to US$50 per barrel. As the biomass also contains omega-3, proteins and other valuable biomaterials that can be commercialized in the food and feed markets, a microalgae farm can serve the biofuel, food and feed industries, which currently face an increasing lack of quality feedstock at an affordable price.

  • chapterNo Access

    Chapter 3: Magnetically Active Asymmetric Nanoheterostructures Based on Colloidal All-Inorganic Multicomponent Nanocrystals

    Colloidal inorganic nanocrystals (NCs) constitute an important class of advanced nanomaterials owing to the flexibility with which their dimensionality-dependent physical–chemical properties can be controlled by engineering their compositional, structural, and geometric features in the synthesis stage and the versatility with which they can be exploited in disparate technological fields, spanning from optoelectronics, energy conversion/production to catalysis, and biomedicine. In recent years, building upon knowledge acquired on the thermodynamic and kinetic processes that underlie NC evolution in liquid media, synthetic nanochemistry research has made tremendous advances, opening new possibilities for designing, creating, and mastering increasingly complex NC-based assemblies, in which sections of different materials are grouped together into free-standing, easily processable multifunctional nanocomposite systems. This chapter will provide an overview of this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of so-called hybrid or heterostructured nanocrystals (HNCs) in asymmetric non-core/shell geometries, in which distinct material modules are interconnected in heterodimer, heterooligomer, and anisotropic multidomain architectures via heteroepitaxial bonding interfaces of limited extension. The focus will be on HNCs that incorporate at least one magnetic material component combined with semiconductors and/or plasmonic metals, which hold potential for generating enhanced, unconventional magnetic behavior, on one side, and diversified or even new properties and capabilities, on the other side. Various synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described and rationally interpreted within the framework of the currently understood mechanisms of colloidal heteroepitaxy.