Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The mechanical and electronic properties of GaP nanowires are investigated by computing the Young’s modulus, Poisson’s ratio, energy band gap and effective carrier masses using first-principles calculations based on density functional theory. The wurtzite structural nanowires with diameters upper limited to ∼27Å are strained by uniaxial strains in the range of −7.5–7.5%. The Young’s moduli of nanowires are found to be decreased with increase of the size in the direction of the Young’s modulus of the bulk GaP. The Poisson’s effect is determined to be stronger in GaP nanowires than in the bulk. The energy band gaps of the unstrained and strained nanowires are obtained to be enlarged with decrease of the size due to the quantum size effect. The confinement effect is found larger in the compressed nanowires than in the stretched ones. All the unstrained nanowires except the largest one are indirect band gap materials. Indirect to direct band gap transition is determined to be size and strain dependent. The effective carrier masses in all unstrained nanowires are found small compared to the ones in the bulk GaP. The effective electron and hole masses are obtained to be modulated in nanowires of this work by the compressive and both compressive/tensile strains, respectively.
Using the ab initio plane-wave ultrasoft pseudopotential method based on the generalized gradient approximation (GGA), we investigate the bandgap tuning in monolayer phosphorene in terms of applying external electric fields perpendicular to the layers. The bandgap continuously decreases with the applied electric fields, eventually rendering them metallic. The phenomenon is explained by the giant stark effect. The interlayer P-P distance also result in the semiconductor-to-metal transition. The phosphorene exhibits the significant bandgap tuning ability under different strains with 5% variation. Our investigations show the bandgap change for the fabrication of novel electronic and photonic devices.
This paper presents a detailed investigation of the effects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrödinger–Poisson–Navier model, as a generalization of earlier work on the Schrödinger–Poisson problem. Finite-element-based simulations have been performed on a AlN/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.