Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    SPIN RELAXATION IN InP AND STRAINED InP NANOWIRES

    SPIN01 Sep 2014

    In this paper, we employ semiclassical Monte Carlo approach to study spin polarized transport in InP and strained InP nanowires on GaAs substrate. Due to higher spin relaxation lengths, InP is being researched as suitable III–V material for spintronics related applications. Spin relaxation in InP channel is as a result of D'yakonov–Perel (DP) relaxation and Elliott–Yafet (EY) relaxation. We have considered injection polarization along z-direction and the magnitude of ensemble averaged spin variation is studied along the x-direction i.e., along transport direction. The effect of strain on various scattering rates and spin relaxation length is studied. We then present the effect of variation of nanowire width on spin relaxation length for the case of both strained and unstrained InP nanowire. The wire cross-section is varied between 4 × 4 nm2 and 10 × 10 nm2.

  • articleNo Access

    A novel technology to produce microalgae biomass as feedstock for biofuel, food, feed and more

    TECHNOLOGY01 Jun 2015

    While microalgae oil was perceived as the preferred feedstock to supply the inelastic global demand for biofuel, industry and academia attempts to create viable microalgae-oil production processes has not reach the desired goal yet. UniVerve Ltd. has developed an innovative technological process that provides a scalable, cost effective and sustainable solution for the production of microalgae-biomass. The oil, which can be extracted with off-the-shelf wet-extraction technologies and used as an excellent feedstock for all kinds of biofuel, is expected to be produced at up to US$50 per barrel. As the biomass also contains omega-3, proteins and other valuable biomaterials that can be commercialized in the food and feed markets, a microalgae farm can serve the biofuel, food and feed industries, which currently face an increasing lack of quality feedstock at an affordable price.