Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the first sections of this paper we give an elementary but rigorous approach to the construction of the quantum Bosonic and supersymmetric string system continuing the analysis of Dimock. This includes the construction of the DDF operators without using the vertex algebras. Next we give a rigorous proof of the equivalence between the light-cone and the covariant quantization methods. Finally, we provide a new and simple proof of the BRST quantization for these string models.
In this paper we review a recently suggested generalization of the Feynman path integral to an integral over random surfaces. The proposed action is proportional to the linear size of the random surfaces and is called gonihedric. The convergence and the properties of the partition function are analyzed. The model can also be formulated as a spin system with identical partition functions. The spin system represents a generalization of the Ising model with ferromagnetic, antiferromagnetic and quartic interactions. Higher symmetry of the model allows to construct dual spin systems in three and four dimensions. In three dimensions the transfer matrix describes the propagation of closed loops and we found its exact spectrum. It is a unique exact solution of the three-dimensional statistical spin system. In three and four dimensions, the system exhibits the second-order phase transitions. The gonihedric spin systems have exponentially degenerated vacuum states separated by the potential barriers and can be used as a storage of binary information.