Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CAPTURE CONDITIONS FOR STRANGELETS IN THE GEOMAGNETIC FIELD

    Strangelets coming from the interstellar medium are an interesting target in experiments searching for evidence of this hypothetic state of hadronic matter. For a stationary population of strangelets to be trapped by the geomagnetic field, these particles would have to fulfill certain conditions, namely having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion. For totally ionized strangelets these two conditions prevent them to be stably trapped if one considers that a similar mechanism resulting in the anomalous cosmic rays belt should also be responsible for strangelet trapping. The situation could be different if those particles could reach the earth with an effective charge less than total ionization, since it would lower the particle's magnetic rigidity, but cross sections are much too low to allow interstellar electronic recombination for strangelets in the low baryonic number range. If traces of strangelets are indeed measured as a component of the radiation belt, alternative methods for their capture have to be proposed.