Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MODELING THE PERFORMANCE OF COMMUNICATION SCHEMES ON NETWORK TOPOLOGIES

    This paper investigates the influence of the interconnection network topology of a parallel system on the delivery time of an ensemble of messages, called the communication scheme. More specifically, we focus on the impact on the performance of structure in network topology and communication scheme. We introduce causal structure learning algorithms for the modeling of the communication time. The experimental data, from which the models are learned automatically, is retrieved from simulations. The qualitative models provide insight about which and how variables influence the communication performance. Next, a generic property is defined which characterizes the performance of individual communication schemes and network topologies. The property allows the accurate quantitative prediction of the runtime of random communication on random topologies. However, when either communication scheme or network topology exhibit regularities the prediction can become very inaccurate. The causal models can also differ qualitatively and quantitatively. Each combination of communication scheme regularity type, e.g. a one-to-all broadcast, and network topology regularity type, e.g. torus, possibly results in a different model which is based on different characteristics.

  • articleNo Access

    IDENTIFICATION OF NONLINEAR CONTINUOUS DYNAMIC SYSTEMS WITH CLOSED CYCLE

    Structural and parametric identification of nonlinear continuous dynamic systems with a closed cycle on a set of continuous block-oriented models with feedback is considered. The method of structural identification in the steady state based on the observation of the system's input and output variables at the input periodic influences is proposed. The solution of the parameter identification problems, which can be immediately connected with the structural identification problem, is carried out in the steady and transient states by the method of least squares. The structural and parametric identification algorithms are investigated by means of both theoretical analysis and computer modeling.