Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    IMAGE ENGINEERING AND RELATED PUBLICATIONS

    Image engineering is a discipline that includes image processing, image analysis, image understanding, and the applications of these techniques. To promote its development and evolvement, this paper provides a well-regulated explanation of the definition of image engineering, as well as its intention and extension. It also introduces a new classification of the theories of image engineering, and the applications of image technology. A thorough statistical survey on the publications in this discipline is carried out, and an analysis and discussion of the statistics from the classification results are presented. This work shows a general and an up-to-date picture of the status, progress, trends and application areas of image engineering.

  • articleNo Access

    Image Matting: A Comprehensive Survey on Techniques, Comparative Analysis, Applications and Future Scope

    In the era of rapid growth of technologies, image matting plays a key role in image and video editing along with image composition. In many significant real-world applications such as film production, it has been widely used for visual effects, virtual zoom, image translation, image editing and video editing. With recent advancements in digital cameras, both professionals and consumers have become increasingly involved in matting techniques to facilitate image editing activities. Image matting plays an important role to estimate alpha matte in the unknown region to distinguish foreground from the background region of an image using an input image and the corresponding trimap of an image which represents a foreground and unknown region. Numerous image matting techniques have been proposed recently to extract high-quality matte from image and video sequences. This paper illustrates a systematic overview of the current image and video matting techniques mostly emphasis on the current and advanced algorithms proposed recently. In general, image matting techniques have been categorized according to their underlying approaches, namely, sampling-based, propagation-based, combination of sampling and propagation-based and deep learning-based algorithms. The traditional image matting algorithms depend primarily on color information to predict alpha matte such as sampling-based, propagation-based or combination of sampling and propagation-based algorithms. However, these techniques mostly use low-level features and suffer from high-level background which tends to produce unwanted artifacts when color is same or semi-transparent in the foreground object. Image matting techniques based on deep learning have recently introduced to address the shortcomings of traditional algorithms. Rather than simply depending on the color information, it uses deep learning mechanism to estimate the alpha matte using an input image and the trimap of an image. A comprehensive survey on recent image matting algorithms and in-depth comparative analysis of these algorithms has been thoroughly discussed in this paper.