Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Flexible dielectric materials with environmental-friendly, low-cost and high-energy density characteristics are in increasing demand as the world steps into the new Industrial 4.0 era. In this work, an elastomeric nanocomposite was developed by incorporating two components: cellulose nanofibrils (CNFs) and recycled alum sludge, as the reinforcement phase and to improve the dielectric properties, in a bio-elastomer matrix. CNF and alum sludge were produced by processing waste materials that would otherwise be disposed to landfills. A biodegradable elastomer polydimethylsiloxane was used as the matrix and the nanocomposites were processed by casting the materials in Petri dishes. Nanocellulose extraction and heat treatment of alum sludge were conducted and characterized using various techniques including scanning electron microscopy (SEM), thermogravimetric analysis/derivative thermogravimetric (TGA/DTG) and X-ray diffraction (XRD) analysis. When preparing the nanocomposite samples, various amount of alum sludge was added to examine their impact on the mechanical, thermal and electrical properties. Results have shown that it could be a sustainable practice of reusing such wastes in preparing flexible, lightweight and miniature dielectric materials that can be used for energy storage applications.
Yuan Tseh Lee was instrumental in the development and construction of an apparatus that utilized crossed molecular beams, presenting a break-through technique that allowed for the understanding of the dynamics of elementary chemical reactions. This was done by following the trajectories of reactants and reaction products in single collision events, allowing the visualization of the dynamics of how chemical reactions take place. This article also highlights Prof. Lee’s belief in the severity of the consequences of global warming and his concerns relating to the need to substantially reduce carbon emissions.