Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper introduces the notion of chaos synthesis by means of evolutionary algorithms and develops a new method for chaotic systems synthesis. This method is similar to genetic programming and grammatical evolution and is being applied along with three evolutionary algorithms: differential evolution, self-organizing migration and genetic algorithm. The aim of this investigation is to synthesize new and "simple" chaotic systems based on some elements contained in a prechosen existing chaotic system and a properly defined cost function. The investigation consists of eleven case studies: the aforementioned three evolutionary algorithms in eleven versions. For all algorithms, 100 simulations of chaos synthesis were repeated and then averaged to guarantee the reliability and robustness of the proposed method. The most significant results were carefully selected, visualized and commented in this report.
Cellulose with at least one of its dimensions less than or equal to 100 nm is termed as nanocellulose. It is a unique and promising natural material extracted from native cellulose and produced by certain microbial cells and cell-free systems. Nanocellulose has received immense consideration in last couple of decades owing to its abundance, renewability, remarkable physical properties, special surface chemistry, and excellent biological features (biocompatibility, biodegradability, and non-toxicity). Taking advantage of the structure and properties of nanocellulose, the current science of biomaterials aims at developing new and formerly non-existing materials with novel and multifunctional properties, in an attempt to meet current requirements in different fields such as biomedicine, the environment, energy, pharmaceutics, agriculture, food, etc. This chapter provides an overview of different synthesis methods of nanocellulose: mechanical approaches by applying high-pressure, grinding, crushing, sonication, and milling; chemical synthesis involving alkaline, acidic, oxidation, and enzymatic treatment; as well as by using bacteria and cell-free systems. It further discusses different morphological forms of nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), bacterial nanocellulose (BNC), and cellulose produced by cell-free systems, in terms of their features such as chemical structure, macrostructural morphology, physico-mechanical properties, thermal and biological properties, rheology, optical behavior, and their interrelationships and applications.