Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterFree Access

    Chapter 1: Introduction to Nanocellulose

    Nanocellulose01 Apr 2021

    Cellulose with at least one of its dimensions less than or equal to 100 nm is termed as nanocellulose. It is a unique and promising natural material extracted from native cellulose and produced by certain microbial cells and cell-free systems. Nanocellulose has received immense consideration in last couple of decades owing to its abundance, renewability, remarkable physical properties, special surface chemistry, and excellent biological features (biocompatibility, biodegradability, and non-toxicity). Taking advantage of the structure and properties of nanocellulose, the current science of biomaterials aims at developing new and formerly non-existing materials with novel and multifunctional properties, in an attempt to meet current requirements in different fields such as biomedicine, the environment, energy, pharmaceutics, agriculture, food, etc. This chapter provides an overview of different synthesis methods of nanocellulose: mechanical approaches by applying high-pressure, grinding, crushing, sonication, and milling; chemical synthesis involving alkaline, acidic, oxidation, and enzymatic treatment; as well as by using bacteria and cell-free systems. It further discusses different morphological forms of nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), bacterial nanocellulose (BNC), and cellulose produced by cell-free systems, in terms of their features such as chemical structure, macrostructural morphology, physico-mechanical properties, thermal and biological properties, rheology, optical behavior, and their interrelationships and applications.