Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RANKING OF CMIP5-BASED GENERAL CIRCULATION MODELS USING COMPROMISE PROGRAMMING AND TOPSIS FOR PRECIPITATION: A CASE STUDY OF UPPER GODAVARI BASIN, INDIA

    This study determines the suitable general circulation models (GCMs) for the prediction of future precipitation of Upper Godavari sub-basin, India. Five performance indicators (PIs) namely correlation coefficient (CC), normalized root mean square deviation (NRMSD), absolute normalized mean biased deviation (ANMBD), skill score (SS), Nash Sutcliffe efficiency (NSE), and three different combinations (Case 1: all performance indicators, Case 2: CC, SS and ANMBD, and Case 3: CC, SS, and NRMSD) were considered to evaluate the performance of 38 GCM models for the study area. The observed precipitation data for 12 grid points covering the Upper Godavari sub-basin along with eight districts of Maharashtra were used for the selection of the suitable GCMs. The weights of the indicators were determined by the entropy method. Compromise programming (CP) and the technique for order preference to the similarity to ideal solution (TOPSIS) methods were used for ranking the GCMs. The group decision-making approach was employed to make a collective decision about the rank of 38 GCMS considering all the grid points. In view of all the three combinations of PIs, the study suggests that the effect of the performance indicator NSE on the ranking of GCM models is the most significant (weights for the grid points varying in the range 22.75%–78%) followed by ANMBD, CC, NRMSD, and SS. Including the maximum number of PIs and considering their combinations is found to be much helpful to enhance the credibility of the ranking of GCMs. From the group decision-making approach, it was observed that the ensemble of MPI-ESM-P, CNRM-CM5-2, and CNRM-CM5 is suitable for the prediction of precipitation for the study area.