Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning
by Jean Gallier and Jocelyn Quaintance
Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume II: Fundamentals of Optimization Theory with Applications to Machine Learning
by Jean Gallier and Jocelyn Quaintance

 

  • articleNo Access

    Single Sample Face Recognition in the Last Decade: A Survey

    Single sample face recognition (SSFR) is a challenging research problem in which only one face image per person is available for training. Moreover, the face image may have different pose, expression, illumination, occlusion etc. rendering this problem more complex. Several methods have been suggested by various researchers in literature to solve SSFR. Here, we provide a comprehensive review of the methods proposed in the last decade for solving SSFR problem and introduce a novel taxonomy for the same. We divide SSFR methods broadly into five categories viz. (i) feature based, (ii) virtual sample generation based, (iii) generic database based, (iv) Hybrid and (v) other methods. We have also briefly reviewed the face databases used for evaluating single sample face recognition methods. Furthermore, the performance of the methods has been analyzed in terms of classification accuracy as given in literature. At last, we also suggest some future direction to the researchers and practitioners working in this fascinating research area.

  • articleNo Access

    EXPERT SYSTEMS AND PATTERN RECOGNITION

    A definition of expert systems is given, its pragmatic demands are cited and its structure is described. The methods and ways of pattern recognition are used in the subsystems DIALOGUE, ANALYTIC and HOMEOSTAT. The recognition algorithms which work on the information to be retained in the data base and knowledge base are described. The problems of recognition appearing under the construction of expert systems are noted.

  • articleNo Access

    APPLYING A TAXONOMY OF FORMATION CONTROL IN DEVELOPING A ROBOTIC SYSTEM

    Designing cooperative multi-robot systems (MRS) requires expert knowledge both in control and artificial intelligence. Formation control is an important research within the research field of MRS. Since many researchers use different ways in approaching formation control, we try to give a taxonomy in order to help researchers design formation systems in a systematical way. We can analyze formation structures in two categories: control abstraction and robot distinguishability. The control abstraction can be divided into three layers: formation shape, reference type, and robotic control. Furthermore, robots can be classified as anonymous robots or identification robots depending on whether robots are distinguishable according to their inner states. We use this taxonomy to analyze some ground-based formation systems and to state current challenges of formation control. Such information becomes the design know-how in developing a formation system, and a case study of designing a multi-team formation system is introduced to demonstrate the usefulness of the taxonomy.

  • articleNo Access

    A NEW METHODOLOGY FOR DOMAIN ONTOLOGY CONSTRUCTION FROM THE WEB

    Resources like ontologies are used in a number of applications, including natural language processing, information retrieval(especially from the Internet). Different methods have been proposed to build such resources. This paper proposes a new method to extract information from the Web to build a taxonomy of terms and Web resources for a given domain. Firstly, a (CHIR) method is used to identify candidat terms. Then a similarity (SIM) measure is introduced to select relevant concepts to build the ontology. Our new algorithm, called (CHIRSIM), is easy to implement and can be efficiently integrated into an information retrieval system to help improve the retrieval performance. Experimental results show that the proposed approach can effectively and efficiently construct a cancer domain ontology from unstructured text documents.

  • articleOpen Access

    A Research Review and Taxonomy Development for Decision Support and Business Analytics Using Semantic Text Mining

    By 2018, business analytics (BA), believed by global CIOs to be of strategic importance, had for years been their top priority. It is also a focus of academic research, as shown by a large number of papers, books, and research reports. On the other hand, the BA domain suffers from several incorrect, imprecise, and incomplete notions. New areas and concepts emerge quickly; making it difficult to ascertain their structure. BA-related taxonomies play a crucial role in analyzing, classifying, and understanding related objects. However, according to the literature on taxonomy development in information systems (IS), in most cases the process is ad hoc. BA taxonomies and frameworks are available in the literature; however, some are excessively general frameworks with a high-level conceptual focus, while others are application or domain-specific. Our paper aims to present a novel semi-automatic method for taxonomy development and maintenance in the field of BA using content analysis and text mining. The contribution of our research is threefold: (1) the taxonomy development method, (2) the draft taxonomy for BA, and (3) identifying the latest research areas and trends in BA.

  • chapterNo Access

    Short message service campaign taxonomy for an intelligent marketing system

    This study presents a novel taxonomy of short message service campaigns, for the purpose of building an intelligent marketing system. The main issue of mass marketing is that one size does not fit everybody. In other words, it is challenging to meet different consumer needs. With the help of artificial intelligence, marketers can be supported to overcome some of these challenges. This study uses a mixed methods approach where design science and grounded theory is used to produce a short message service campaign taxonomy for a future intelligent marketing system. Data collection consisted of 386 previously active campaigns used over 33 months to build the taxonomy. An experimental study was conducted to test the effectiveness of the proposed taxonomy. The experiments involved automatic generation of campaign messages. The validity of these campaign messages, and hence the proposed taxonomy, was ascertained by analysing the messages within a business context. The study concludes that the system, intertwined with the taxonomy, performs comparably to a regular campaign. Another proof of concept is that the business context deemed the generated campaign texts to be both semantically and syntactically similar to run them in active campaigns as experiments.