Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A PARAMETERIZED ALGORITHM TO EXPLORE FORMAL CONTEXTS WITH A TAXONOMY

    Formal Concept Analysis (FCA) is a natural framework to learn from examples. Indeed, learning from examples results in sets of frequent concepts whose extent contains mostly these examples. In terms of association rules, the above learning strategy can be seen as searching the premises of rules where the consequence is set. In its most classical setting, FCA considers attributes as a non-ordered set. When attributes of the context are partially ordered to form a taxonomy, Conceptual Scaling allows the taxonomy to be taken into account by producing a context completed with all attributes deduced from the taxonomy. The drawback, however, is that concept intents contain redundant information. In this article, we propose a parameterized algorithm, to learn rules in the presence of a taxonomy. It works on a non-completed context. The taxonomy is taken into account during the computation so as to remove all redundancies from intents. Simply changing one of its operations, this parameterized algorithm can compute various kinds of concept-based rules. We present instantiations of the parameterized algorithm to learn rules as well as to compute the set of frequent concepts.

  • articleNo Access

    ON SUCCINCT REPRESENTATION OF KNOWLEDGE COMMUNITY TAXONOMIES WITH FORMAL CONCEPT ANALYSIS

    We present an application of formal concept analysis aimed at representing a meaningful structure of knowledge communities in the form of a lattice-based taxonomy. The taxonomy groups together agents (community members) who develop a set of notions. If no constraints are imposed on how it is built, a knowledge community taxonomy may become extremely complex and difficult to analyze. We consider two approaches to building a concise representation, respecting the underlying structural relationships while hiding superfluous information: a pruning strategy based on the notion of concept stability and a representational improvement based on nested line diagrams and "zooming". We illustrate the methods on two examples: a community of embryologists and a community of researchers in complex systems.

  • articleNo Access

    A TAXONOMY OF TASK SCHEDULING ALGORITHMS IN THE GRID

    One motivation of Grid computing is to aggregate the power of widely distributed resources, and provide non-trivial services to users. To achieve this goal, efficient task scheduling algorithms are essential. However, scheduling algorithms in the Grid present high diversities that need to be classified. In this paper, with the help of an abstract scheduling architecture, some key features of the task scheduling problem in the Grid are discussed, followed by a taxonomy of the scheduling algorithms. Some typical examples are given in each category to present a picture of the current research and help to find new research problems.