Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Selection of thin-film-integrable substrates for THz modulator

    The integrable substrate for THz modulation directly influences both the quality of films and THz absorption. Currently, the available THz substrate candidate library is still not clear. Here, we have carried out a systematic investigation of commonly used commercial substrates, including Si, quartz SiO2, MgO, Al2O3, GdScO3 and TbScO3 in the range of 0.4–1.6THz. It is found that low resistance Si, TSO and GSO are certainly not appropriate for THz light modulation due to their relatively higher absorption and dielectric constant, while the rest show better THz transmittance, low refractive index and loss. However, the dielectric constant and refractive index of high resistance Si are generally two times larger than quartz SiO2, Al2O3 and MgO. Compared with Al2O3 and MgO, quartz SiO2 shows at least 50% lower dielectric constant, refractive index and absorption, making it the best candidate. Our research is believed to build the rich substrate candidate library for THz range light modulation.

  • articleOpen Access

    Microstructure and dielectric properties of low-temperature sintered MgO-based ceramics at millimeter wave and terahertz frequencies

    Low-temperature co-fired ceramics (LTCC) applied in millimeter/microwave and terahertz frequencies (5G/6G) have attracted a lot of attention recently. In this study, MgO-based dielectric ceramics were successfully sintered at 950°C with the sintering aids: x wt.% of LiF fluoride (x=2, 4, 6, 8, 10) and 0.5wt.% of BBSZ (Bi2O3–B2O3–SiO2–ZnO) glass. BBSZ glass was introduced as another sintering aid to facilitate the sintering and densification. Crystalline structure and micro-morphology were investigated and analyzed. Dielectric properties (εr, Q×f, τf) at millimeter/microwave and terahertz wave frequencies were also studied. The ionic characteristics of Mg–O bond (fi), the lattice energy (U) and the bond energy (E) were calculated and analyzed. It is suggested that the optimal x=4, where εr=10.5, Q×f=120,000GHz (@12GHz) and τf=26ppm/°C at millimeter/microwave range. When the frequency was up to terahertz (1.0THz), the εr values were 8.8–9.35 and the tanδ were 5.6×1038.7×103. The experimental results indicated that the low-temperature sintered MgO-based ceramics have potential for millimeter/microwave and terahertz communication applications.