Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MODELING HEAT-INDUCED CHEMICAL REACTION IN NANOTHERMITES EXCITED BY PULSE LASER: A HOT SPOT MODEL

    A hot spot model, involving interaction of pulse laser with nanoparticles where heat diffusion and exothermic chemical reaction are considered and spread out of heat and chemical reaction, is developed to model the thermal reaction dynamic process of Al/NC (nitrocellulose) nanothermites excited by pulse laser for the purpose of verifying the experimental ablation criterion proposed recently and providing a microscopic insight into different physical pathways leading to ablation. In this model, the spatial position and conversion of matters taking place in chemical reactions are regarded as the functions of time, space, and temperature. An exact expression of power density absorbed by nanoparticles in matrix is incorporated to calculate the diameters of chemical reaction region. Calculation results justify experimental ablation criterion, and show that thermal decomposition mechanism predominates the nanosecond pulse-excited process before ablation but it is not suitable for the 100 ps regime which is qualitatively attributed to shock pressure. The effects of pulse duration and nanoparticle size on ablation threshold are examined.

  • articleNo Access

    A GRAM SCALE SYNTHESIS OF MONODISPERSED SILVER NANOPARTICLES CAPPED BY CARBOXYLATES AND THEIR LIGAND EXCHANGE

    In this paper, we report a simple yet powerful synthetic method for obtaining monodispersed silver nanoparticles by direct thermal decomposition of two materials — one is silver acetate as a source of the metal core and the other is myristic acid as a capping agent. The reaction was performed at 250°C, the boiling point of myristic acid, without additional solvent. The nucleation and growth of the particles were monitored by dynamic light scattering in order to optimize the reaction time. By this simple procedure, we could obtain uniformly sized Ag nanoparticles with the average diameter of 4.8 ± 0.1 nm. Although the particles were synthesized at high temperature, the ligand exchange between myristates and alkanethiolates can be achieved at room temperature. Significant characteristics of Ag nanoparticles attributed to localized surface plasmons were investigated.

  • articleNo Access

    Enhanced third-order nonlinear optical properties of high purity ZnS nanoparticles

    This paper reports on the preparation of high purity ZnS nanoparticles by a facile single step solvent-free route via thermal decomposition of zinc acetate dihydrate and thiourea in air atmosphere. The third-order optical nonlinearity of the prepared ZnS nanoparticles were measured by Z-scan technique using continuous wave 532-nm diode pumped Nd:YAG laser. From nonlinear optical (NLO) measurements, the prepared ZnS nanoparticles possess negative nonlinearity i.e., self-defocusing. Open aperture Z-scan measurement shows saturable absorption within the medium. These results show that the prepared ZnS nanoparticles are promising candidate for various potential applications in the field of nonlinear optics.

  • articleNo Access

    SYNTHESIS AND CHARACTERIZATION OF Cu NANOPARTICLES PREPARED BY THERMAL DECOMPOSITION OF Cu-OLEATE COMPLEX

    Cu nanoparticles have been synthesized by thermal decomposition of Cu-oleate complex, which was prepared by the reaction with CuCl2 and sodium oleate in water solution. The monodispersed Cu nanoparticles were produced by controlling temperature (290°C). TEM images of the nanoparticles showed two-dimensional assembly of particles with diameter of 16.2 ± 2.9 nm, demonstrating the uniformity of these nanoparticles. EDX spectrum and XRD peaks of the nanoparticles showed the highly crystalline nature of the Cu structures. The decomposition of Cu-oleate complex was analyzed with TGA and the crystallization of Cu nanoparticles was observed with XRD.

  • articleNo Access

    SYNTHESIS OF MONODISPERSE Mn3O4 NANOCRYSTALS

    Mn3O4 nanocrystals have been prepared using [bis(2-hydroxyacetophenato)manganese(II)] as precursor. Transmission electron microscopy analysis demonstrated nanocrystals Mn3O4 with an average diameter of about 20 nm. The structural study by X-ray diffraction indicates that these nanocrystals have pure tetragonal phase. The phase pure samples were characterized using X-ray Photoelectron Spectroscopy for Mn 2p level. The values of binding energies are consistent with the relative values reported in the literature.

  • articleNo Access

    Walnut Shell-Templated Ceria Nanoparticles: Green Synthesis, Characterization and Catalytic Application

    Ceria (CeO2) nanoparticles (NPs) have been produced from cerium nitrate and walnut shell as a worthless agricultural waste by a thermal decomposition method followed by open air calcination. These NPs further were characterized using powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy, energy dispersive X-ray spectroscope and Fourier transform infrared spectroscopy. Moreover, particle sizes can be tuned by changing cerium source/biomass ratio. To test the catalytic activity of cerium NPs as a heterogeneous catalyst, we selected three-component synthesis of 3,4-dihydroquinoxalin-2-amine. Also, the efficiency of CeO2 NPs as a support for palladium NPs and subsequent use in aerobic oxidation of alcohols has been investigated. TEM image of a recovered catalyst indicates the formation of 12 nm sized palladium NPs within the cerium oxide NPs. The catalyst is quite effective for the oxidation of primary and secondary benzylic alcohols into their corresponding aldehydes and ketones under atmospheric pressure of air. Oxidation of secondary aliphatic alcohols is performed in oxygen atmosphere.

  • articleNo Access

    Photocatalytic Decomposition of Rhodamine B Dye Using Copper Oxide Nanoparticles Prepared from Copper Chalcone Complexes

    Nanostructured CuO has been successfully synthesized via Thermal decomposition method at 700C. Prepared CuO was characterized using IR spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). IR spectra confirm the metal–oxygen bonding in these nanoparticles. The XRD pattern confirms a single-phase crystalline nature of the nanoparticles. The synthesized CuO was demonstrated as an efficient catalyst in degradation of Rhodamine B in the presence of light through oxidation. More than 93% of the Rhodamine B dye was degraded after 150min. It was observed that photocatalytic degradation of dyes follows pseudo-first-order kinetics. A tentative mechanism has also been proposed for the photocatalytic degradation of dyes in the presence of copper oxide semiconductor.

  • articleNo Access

    Modeling the Failure Behavior of CFRP Laminates Subjected to Combined Thermal and Mechanical Loadings

    This paper proposes a theoretical approach to predict the failure behavior of laminated carbon fiber reinforced polymer (CFRP) under combined thermal and mechanical loadings. Two types of CFRP Laminates, i.e., CCF300/BA9916 and T700/BA9916, are investigated, and TGA tests in both nitrogen and oxidation environments at different heating rates are carried out to obtain the thermal decomposition kinetic parameters of polymer matrix and carbon fiber. Based on the thermal decomposition behavior and a multi-level structure model, the thermal physical properties, mechanical properties and thermal deformations of the laminated composites at high temperatures are obtained. Then substituting thermally degraded properties into constitutive equations of composite materials as macroscopic defects, the damage mode and failure strength of the laminated composite under thermo-mechanical loadings is obtained. Predicted elastic properties and failure strength are compared with experimental results as well as previous models. Effects of heating rates and heating environments through rigorous physical model are considered in the present work. It is found that the heating rate significantly affects the thermal and mechanical properties, the higher the heating rate, the less degraded are the thermo-mechanical properties and failure strength at a given temperature. Young’s modulus and failure strength of T700/BA9916 are higher than those of CCF300/BA9916 at high temperatures, due to the higher volume fraction of carbon fibers, which are less weakened in thermal environment.

  • articleNo Access

    Solvent Effect on Structure, Morphology and Catalytic Activity on Ammonium Perchlorate of Nano-MgWO4

    Nano01 Oct 2019

    For exploring the interesting solvent effect on structure and morphology, a variety of MgWO4 nanoparticles were prepared by a one-pot solvothermal method with different proportional solvents of water and ethylene glycol. The results showed that monoclinic wolframite crystalline structure of MgWO4 was successfully synthesized, corresponding to two standard cards of MgWO4 (JCPDS No. 27-0789) and MgWO4 (JCPDS No. 19-0776), respectively. The morphology of MgWO4 nanoparticles presents eight different shapes and orderly transforms from one shape to another with increasing water content in mixed EG-water solvents, and a possible mechanism was proposed. The catalytic activities of these MgWO4 nanoparticles on the thermal decomposition of Ammonium Perchlorate (AP) were compared using differential scanning calorimetry (DSC) method, and found to present good change rule with particle size.