Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    PERMUTATION ENTROPY APPLIED TO MOVEMENT BEHAVIORS OF DROSOPHILA MELANOGASTER

    Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

  • articleNo Access

    Preparation of Nanosized Copper–Manganese Composite Oxides and Their Catalytic Performance in the Oxidation of Toluene

    Nano23 Jul 2024

    Nanosized Cu–Mn composite oxide catalysts were prepared from potassium permanganate, copper nitrate, n-butanol, and cetyltrimethylammonium bromide as a manganese source, copper source, reducing agent, and surfactant, respectively. The Cu0.2–Mn sample possessed a small particle size (10–40nm) and a relatively high specific surface area (46.24m2g1); its main components were Cu1.5Mn1.5O4 and Mn3O4. As a consequence, the Cu0.2–Mn catalyst exhibited good catalytic activity in the oxidation of toluene. At a toluene concentration of 1000ppm and a space velocity of 60,000mLg1h1, the T50 and T90 of the Cu0.2–Mn catalyst toward toluene were 239C and 250C, respectively. Furthermore, even after 30h of operation at 275C, the conversion of toluene was 99% (at the space velocity of 60,000mLg1h1).

  • chapterNo Access

    33: Conversion of Volatile Organic Compounds to Useful Building Blocks by Mild Catalytic Oxidation

    This chapter aims to illustrate the research that was conducted in Portugal or in collaboration with Portuguese research groups in the 2011–2022 period on the oxidative conversion of volatile organic compounds (VOCs) to useful building blocks. It concerns the selective oxidation under mild catalytic oxidations of some VOCs (toluene, xylene, ethylbenzene, styrene and n-hexane), which are hazardous to human health and the environment. Both homogeneous and heterogeneous catalysts are discussed.