Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this work we propose a new procedure on how to extract global information of a space-time. We consider a space-time immersed in a higher dimensional space and formulate the equations of Einstein through the Frobenius conditions of immersion. Through an algorithm and implementation into algebraic computing system we calculate normal vectors from the immersion to find the second fundamental form. We make an application for a static space-time with spherical symmetry. We solve Einstein's equations in the vacuum and obtain space-times with different topologies.
It is shown that topological changes in space-time are necessary to make General Relativity compatible with the Newtonian limit and to solve the hierarchy of the fundamental interactions. We detail how topology and topological changes appear in General Relativity and how it leaves an observable footprint in space-time. In cosmology we show that such topological observable is the cosmic radiation produced by the acceleration of the universe. The cosmological constant is a very particular case which occurs when the expansion of the universe into the vacuum occurs only in the direction of the cosmic time flow.
We investigate the topology of Schwarzschild's black holes through the immersion of this space-time in space of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschilds black hole.