World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY

    https://doi.org/10.1142/S0218488502001648Cited by:5658 (Source: Crossref)

    Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to k-anonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, μ-Argus and k-Similar provide guarantees of privacy protection.

    This paper significantly amends and substantially expands the earlier paper "Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression" (with Samarati) submitted to IEEE Security and Privacy 1998, and extends parts of my Ph.D. thesis "Computational Disclosure Control: A primer on data privacy protection" at the Massachusetts Institute Technology 2001.