Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A reconfigurable membrane-type acoustic metasurface for low-frequency and broadband wave front modulation

    Low-frequency and broadband are the critical challenges in real-life applications. Here, we try to tackle the challenges by proposing a reconfigurable acoustic metasurface (AM) composed of the membrane-type metamaterial (MAM) structure of deep sub-wavelength scale. By employing the external air pumping system into each individual unit cell of the AM, the tension of the membrane can be readily tailored by the system with little interference from other unit cells. Two strategies of the constant pressure method (CPM) and constant volume method (CVM) are reported to design the MAM. And the CVM is adopted as the ultimate design strategy by comparing both methods from aspects of the dimension, operating frequency, and structure complexity. In order to validate the low-frequency and broadband performances of the AM, the Airy-like beams and the acoustic converging based on two identical Airy-like beams are introduced and proof-of-concept simulations are performed with the finite element method. The simulated results agree well with the theoretical predictions. Our design provides the little-interference active design method for the low-frequency and broadband AM to manipulate the wave front, and may have practical engineering applications in areas of the aerospace, high-speed train, marine vessel, and power transmission and transformation project.

  • articleNo Access

    Broadband acoustic cloaking and disguising with full-rangle incident angles based on reconfigurable metasurface

    Narrow bandwidth and specific incident angle are the main drawbacks in real-life applications for the existed carpet cloaking based on the acoustic metasurface (AM). Here, we tackle to get over the problems by proposing a reprogrammable AM. The unit cell is composed of water sink and filling nozzle. By incorporating an external water pumping system into each individual unit cell, the reflected phase can be readily regulated. Since the pumping process is reversible, the AM is reprogrammable under the control of the water pumping system in the frequency range of 3430–6860Hz. Both the acoustic cloaking and disguising are designed based on the proposed AM. The double security for the target object can be ensured to avoid being detected by combining the two designs. Simulated results with the finite element method indicate that the acoustic cloaking and disguising can work in the broad bandwidth of 66.7% of the central frequency with full-range incident angles from 90 to 90. Our design shows promise for applications in realizing the practical skin cloaking and disguising one step closer.