Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleFree Access

    Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics

    This paper presents a thorough study of the strain response of different types of electroceramics during dynamical electrical loading. It highlights important aspects to take into account in the experimental methodology and outlines general guidelines for the discussion and interpretation of the results. The contributions of piezoelectric effect, electrostriction and ferroelectric/ferroelastic domain switching to the strain produced during the application of an alternating electric field are discussed by describing the strain-electric field (S-E) loops of different dielectric ceramics in which each of these contributions are predominant. In particular, attention is given to the description of the strain evolution in the characteristic "butterfly loops" typically shown by ferroelectric materials. The strain-polarization loop is indicated as a useful means to reveal the interconnection between strain and polarization state during dynamical electrical loading. Strain rate is suggested as a powerful tool to obtain more detailed information regarding the mechanisms of the electric field-induced strain.

  • articleOpen Access

    Models of inhomogeneous polarization of ferroelectrics and their practical application

    A three-dimensional mathematical model is proposed that describes the ferroelectric response of polycrystalline ferroelectrics to an electric field in the absence of mechanical stresses. It is based on the separation of the switching process into two related parts: the rotation of the spontaneous polarization vectors and the destruction of the domain wall fixing mechanisms. For each of the parts, the energy costs are calculated, which are the components of the energy balance in the real polarization process. The constitutive relations for the induced and residual components of the polarization vector of the representative volume are obtained. A number of numerical experiments were performed, which showed good agreement with the experimental data.