Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    The writhing of circular cross-section rods: undersea cables to DNA supercoils

    The large deflection theory of circular cross-section elastic rods is used to consider the writhing of long straight rods subjected to tension and torque, such as undersea cables, and to closed loops with inserted twist, such as DNA supercoils.

    The writhed shape of the long straight rod under tension and torque is easily generated by twisting a piece of string with the fingers and consists of three separate parts: a balanced-ply region, a free end loop, and two tail regions. The solution for the rod shape in each of the regions is found. The results are then joined together to ensure continuity of the position and tangent vectors of the strand centreline through the introduction of point forces and moments at the points where the strands enter and exit the balanced ply. The results of the model are consistent with simple experiments on long braided rope.

    The writhed shape of the closed loop with twist inserted between the ends prior to closure is modelled as a balanced ply joined to two end loops. The analysis combines the mechanics solution with the conservation of topological link to provide a simple formula which quantitatively predicts the approximate shape and helix angle of the supercoil. The results are in good agreement with simple experiments on rope and with available data on DNA supercoils.