Although the meaning of twisted symmetry is still not fully understood, the twist approach has its advantages in the construction of field theories on noncommutative spaces. We discuss these advantages on the example of κ-Minkowski space-time. We construct the noncommutative U(1) gauge field theory. Especially the action is written as an integral of a maximal form, thus solving the cyclicity problem of the integral in κ-Minkowski. Using the Seiberg-Witten map to relate noncommutative and commutative degrees of freedom the effective action with the first order corrections in the deformation parameter is obtained.