The unsteady flow over a continuously shrinking sheet with wall mass suction in a nanofluid is numerically studied. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by using similarity transformation. The resulting similarity equations are then solved by the shooting method for three types of nanofluid: copper-water, alumina-water and titania-water to investigate the effect of nanoparticle volume fraction parameter ɸ to the flow in nanofluid. The skin friction coefficient and velocity profiles are presented and results show that dual solutions exist for a certain range of unsteadiness parameter A. It is also found that the nanoparticle volume fraction parameter ɸ and types of nanofluid play an important role to significantly determine the flow behaviour.