Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Generalized wavelet collocation method for solving fractional relaxation–oscillation equation arising in fluid mechanics

    In this paper, a generalized wavelet collocation operational matrix method based on Haar wavelets is proposed to solve fractional relaxation–oscillation equation arising in fluid mechanics. Contrary to wavelet operational methods accessible in the literature, we derive an explicit form for the Haar wavelet operational matrices of fractional order integration without using the block pulse functions. The properties of the Haar wavelet expansions together with operational matrix of integration are utilized to convert the problems into systems of algebraic equations with unknown coefficients. The performance of the numerical scheme is assessed and tested on specific test problems and the comparisons are given with other methods existing in the recent literature. The numerical outcomes indicate that the method yields highly accurate results and is computationally more efficient than the existing ones.

  • articleNo Access

    Temperature and entropy in molecular system

    The irreversibility, temperature, and entropy are identified for an atomic system of solid material. Thermodynamics second law is automatically satisfied in the time evolution of molecular dynamics (MD). The irreversibility caused by an atom spontaneously moves from a non-stable equilibrium position to a stable equilibrium position. The process is dynamic in nature associated with the conversion of potential energy to kinetic energy and the dissipation of kinetic energy to the entire system. The forward process is less sensitive to small variation of boundary condition than reverse process, causing the time symmetry to break. Different methods to define temperature in molecular system are revisited with paradox examples. It is seen that the temperature can only be rigorously defined on an atom knowing its time history of velocity vector. The velocity vector of an atom is the summation of the mechanical part and the thermal part, the mechanical velocity is related to the global motion (translation, rotation, acceleration, vibration, etc.), the thermal velocity is related to temperature and is assumed to follow the identical random Gaussian distribution for all of its x, y and z component. The z-velocity (same for x or y) versus time obtained from MD simulation is treated as a signal (mechanical motion) corrupted with random Gaussian distribution noise (thermal motion). The noise is separated from signal with wavelet filter and used as the randomness measurement. The temperature is thus defined as the variance of the thermal velocity multiply the atom mass and divided by Boltzmann constant. The new definition is equivalent to the Nose–Hover thermostat for a stationary system. For system with macroscopic acceleration, rotation, vibration, etc., the new definition can predict the same temperature as the stationary system, while Nose–Hover thermostat predicts a much higher temperature. It is seen that the new definition of temperature is not influenced by the global motion, i.e., translation, rotation, acceleration, vibration, etc., of the system. The Gibbs entropy is calculated for each atom by knowing normal distribution as the probability density function. The relationship between entropy and temperature is established for solid material.