Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Riesz basis of wavelets constructed from trigonometric B-splines

    In this paper, we construct a class of compactly supported wavelets by taking trigonometric B-splines as the scaling function. The duals of these wavelets are also constructed. With the help of these duals, we show that the collection of dilations and translations of such a wavelet forms a Riesz basis of 𝕃2(ℝ). Moreover, when a particular differential operator is applied to the wavelet, it also generates a Riesz basis for a particular generalized Sobolev space. Most of the proofs are based on three assumptions which are mild generalizations of three important lemmas of Jia et al. [Compactly supported wavelet bases for Sobolev spaces, Appl. Comput. Harmon. Anal. 15 (2003) 224–241].

  • articleNo Access

    Robust wavelet-based estimation for varying coefficient dynamic models under long-dependent structures

    This paper considers a class of robust estimation problems for varying coefficient dynamic models via wavelet techniques, which can adapt to local features of the underlying functions and has less restriction to the smoothness of the functions. The convergence rates and asymptotic distributions of the robust wavelet-based estimator are established when the design variables are stationary short-range dependent (SRD) and the errors are long-range dependent (LRD). Particularly, a rate of convergence (nlogn)1/3 in terms of estimation consistency can be achievable when the true components satisfy certain smoothness for a LRD process. Furthermore, an asymptotic property of the proposed estimator is given to indicate the confidence level of our proposed method for varying coefficient models with LRD.