Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we construct a class of compactly supported wavelets by taking trigonometric B-splines as the scaling function. The duals of these wavelets are also constructed. With the help of these duals, we show that the collection of dilations and translations of such a wavelet forms a Riesz basis of 𝕃2(ℝ). Moreover, when a particular differential operator is applied to the wavelet, it also generates a Riesz basis for a particular generalized Sobolev space. Most of the proofs are based on three assumptions which are mild generalizations of three important lemmas of Jia et al. [Compactly supported wavelet bases for Sobolev spaces, Appl. Comput. Harmon. Anal. 15 (2003) 224–241].
This paper considers a class of robust estimation problems for varying coefficient dynamic models via wavelet techniques, which can adapt to local features of the underlying functions and has less restriction to the smoothness of the functions. The convergence rates and asymptotic distributions of the robust wavelet-based estimator are established when the design variables are stationary short-range dependent (SRD) and the errors are long-range dependent (LRD). Particularly, a rate of convergence (nlogn)−1/3 in terms of estimation consistency can be achievable when the true components satisfy certain smoothness for a LRD process. Furthermore, an asymptotic property of the proposed estimator is given to indicate the confidence level of our proposed method for varying coefficient models with LRD.