Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Transient Deformation of Anisotropic Timoshenko’s Plate

    In this paper, we will present an approach to constructing of dynamical spatial Green’s function (elementary solutions, dominant function) for a thin infinite elastic plate of constant thickness. The plate material is anisotropic with a single plane of symmetry, geometrically coinciding with plate’s middle plane. The Timoshenko theory was used for describing the plate movement. Transient spatial Green’s functions for normal displacements and angles of orthogonal alteration to middle surface before deformation of material fiber are built in the Cartesian coordinate system.

    To construct Green’s function, direct and inverse Laplace and Fourier integral transformations are applied. The originals of Laplace Green’s functions were analytically found with the theorem of residues. To construct Fourier originals, a specific method was used based on Fourier series transformation inversion integral connection with Fourier series on a variable interval.

    Green’s function found for normal displacement made it possible to represent the normal transient function as three-fold convolution of Green function with distant load function. The functions of normal distant displacements were constructed in case of the impact of transient total loads concentrated and distributed across rectangular courts. The numerical method of rectangles was used to calculate the convolution integrals. The influence of the concentrated load speed on transient normal displacements of the anisotropic plate was analyzed.

    As a verification of constructed transient spatial Green’s functions, the results of numerical solutions were compared with the results found using known transient Green’s functions for isotropic thin elastic rectangular simply supported Timoshenko’s plate which solutions are constructed using Laplace integral transformation in time and its decomposition into Fourier series on coordinates. Besides, its confidence was proved analyzing the nature of waves in anisotropic, orthotropic and isotropic plate, found in the process of numerical calculations. The results are represented as diagrams. Examples of calculations are given.

  • articleNo Access

    Stochastic Response of a Coastal Cable-Stayed Bridge Subjected to Multi-Dimensional and Multi-Supported Earthquake and Waves

    In this paper, a stochastic dynamic analysis method for cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is established based on the pseudo-excitation method. The Monte Carlo method is used to analyze the influence of excitation nonlinearity on the bridge structure response, and the applicability of this method is verified. Stochastic response characteristic of coastal cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is studied. The influence of water–structure interaction on the stochastic seismic response of main components of the cable-stayed bridge is described, and the influence of key parameters is analyzed. The results show that the influence of excitation nonlinearity on the response of the cable-stayed bridge can be neglected. A greater energy input caused by the rigid additional mass of the hydrodynamic pressure is the reason for the increasing of the seismic response. The influence of stochastic response of the underwater structure of the tower is changed with the site conditions. For the ground motion acceleration input energy being distributed in the high-frequency domain, the water–structure interaction has a greater effect on stochastic seismic response of the underwater structure of the tower. The influence of water–structure interaction on the stochastic seismic response of the underwater structure of the cable-stayed bridge increases with the increasing of the wave height and water depth.

  • chapterNo Access

    26. WAVES IN AND JUST OUTSIDE THE SWASH ZONE DURING A STORM

    Some twenty ultrasonic wave gages were employed to measure the water surface level as well as the bottom sand level near the shoreline in the field. Obtained data during a storm reveals that the long period waves were really dominant in and just outside the swash zone. It is also shown that the long waves provided the swash oscillation in the form of the loop by standing waves. In addition, data recorded for different conditions of beach slopes and incident waves are also presented for comparison with some analysis.

  • chapterNo Access

    37. 3D COMPUTATIONS OF WAVE-DRIVEN LONGSHORE CURRENTS IN THE SURF ZONE

    This study aims at improving the computation of the wave-driven longshore currents in the surf zone. The vertical distribution of wave-driven currents often deviates from a logarithmic vertical distribution, due to the vertical mixing induced by wave breaking. 3D modeling of these currents provides the opportunity to take this vertical variation into account. The current method of computing the bed shear stress in the 3D approach of Delft3D is dependent on the thickness of the near-bed vertical computational layer: the thinner this layer, the larger the bed shear stress and the smaller the wave-driven longshore currents. Computing the bed shear stress using the velocity at the edge of the wave boundary layer avoids this layer dependency. With this method good agreement with measured velocity data from laboratory experiments and field experiments is obtained, except for very close to the shore. Although Delft3D in 2DH and 3D model have similar skill in simulating longshore currents, the 3D approach is recommended for wave-driven sediment transport related problems as it more realistically represents the cross-shore current and suspended concentration profile.