Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Pulsar winds are the ideal environment for the study of non-linear electromagnetic waves. It is generally thought that a pulsar launches a striped wind, a magnetohydrodynamic entropy wave, where plasma sheets carried along with the flow separate regions of alternating magnetic field. But when the density drops below a critical value, or equivalently for distances from the pulsar greater than a critical radius, a strong superluminal wave can also propagate. In this contribution we discuss the conversion of the equatorial striped wind into a linearly polarized superluminal wave, and we argue that this mode is important for the conversion of Poynting flux to kinetic energy flux before the outflow reaches the termination shock.
Predicting trajectories of fluid parcels on the water surface perturbed by waves is a difficult mathematical and theoretical problem. It is even harder to model flows generated on the water surface due to complex three-dimensional wave fields, which commonly result from the modulation instability of planar waves. We have recently shown that quasi-standing, or Faraday, waves are capable of generating horizontal fluid motions on the water surface whose statistical properties are very close to those in two-dimensional turbulence. This occurs due to the generation of horizontal vortices. Here we show that progressing waves generated by a localized source are also capable of creating horizontal vortices. The interaction between such vortices can be controlled and used to create stationary surface flows of desired topology. These results offer new methods of surface flow generation, which allow engineering inward and outward surface jets, large-scale vortices and other complex flows. The new principles can be also be used to manipulate floaters on the water surface and to form well-controlled Lagrangian coherent structures on the surface. The resulting flows are localized in a narrow layer near the surface, whose thickness is less than one wavelength.