Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The choice of the boundary conditions in mechanical problems has to reflect the interaction of the considered material with the surface. Still the assumption of the no-slip condition is preferred in order to avoid boundary terms in the analysis and slipping effects are usually overlooked. Besides the “static slip models”, there are phenomena that are not accurately described by them, e.g. at the moment when the slip changes rapidly, the wall shear stress and the slip can exhibit a sudden overshoot and subsequent relaxation. When these effects become significant, the so-called dynamic slip phenomenon occurs. We develop a mathematical analysis of Navier–Stokes-like problems with a dynamic slip boundary condition, which requires a proper generalization of the Gelfand triplet and the corresponding function space setting.
We prove that there exists a large-data and global-in-time weak solution to a system of partial differential equations describing the unsteady flow of an incompressible heat-conducting rate-type viscoelastic stress-diffusive fluid filling up a mechanically and thermally isolated container of any dimension. To overcome the principal difficulties connected with ill-posedness of the diffusive Oldroyd-B model in three dimensions, we assume that the fluid admits a strengthened dissipation mechanism, at least for excessive elastic deformations. All the relevant material coefficients are allowed to depend continuously on the temperature, whose evolution is captured by a thermodynamically consistent equation. In fact, the studied model is derived from scratch using only the balance equations for linear momentum and energy, the formulation of the second law of thermodynamics and the constitutive equation for the internal energy. The latter is assumed to be a linear function of temperature, which simplifies the model. The concept of our weak solution incorporates both the temperature and entropy inequalities, and also the local balance of total energy provided that the pressure function exists.