Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Families of not perfectly straight knots

    We present two families of knots which have straight number higher than crossing number. In the case of the second family, we have computed the straight number explicitly. We also give a general theorem about alternating knots that states adding an even number of crossings to a twist region will not change whether the knots are perfectly straight or not perfectly straight.

  • articleNo Access

    On the geometry of two state models for the colored Jones polynomial

    Using the flow property of the R-matrix defining the colored Jones polynomial, we establish a natural bijection between the set of states on the part arc-graph of a link projection and the set of states on a corresponding bichromatic digraph, called arc-graph, as defined by Garoufalidis and Loebl [A non-commutative formula for the colored Jones function, Math. Ann. 336 (2006) 867–900]. We use this to give a new and essentially elementary proof for the knot state-sum formula in [S. Garoufalidis and M. Loebl, A non-commutative formula for the colored Jones function, Math. Ann. 336 (2006) 867–900]. We will show that the state-sum contributions of states on the part arc-graph defined by the universal R-matrix of Uq(sl(2,)) correspond, under our bijection of sets of states, to the contributions in [S. Garoufalidis and M. Loebl, A non-commutative formula for the colored Jones function, Math. Ann. 336 (2006) 867–900]. This will show that the two state models are in fact not essentially distinct. Our approach will also extend the formula of Garoufalidis and Loebl to links. This requires some additional nontrivial observations concerning the geometry of states on the part arc-graphs. We will discuss in detail the computation of the arc-graph state-sum, in particular for 3-braid closures.