Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the present work, monolithic LPS-SiC was fabricated by hot press method with the addition of Al2O3, Y2O3 and SiO2 and annealed at different temperatures to observe microstructure evolution. Process temperature was varied from 1760°C to 1800°C. Process pressure and maturing time are 20MPa and 1h respectively. Hot pressed samples were cut into rectangular bars. Three-point flexural strength was measured at room temperature in air with a cross-head speed of 0.1 mm/min and a lower span of 18 mm. Flexural strength and elastic modulus measurement was performed using a universal test machine (INSTRON 5581, USA). The apparent density of the sintered body was measured by the Archimedes method. The specimen dimension of the heat treatments is 4W×25L×1.5T mm. The specimens used for weight-loss measurement were set into an open carbon crucible to avoid nonuniform temperature distribution within the furnace. Post-fabrication heat treatment was performed in vacuum atmosphere (PO2 ≈ 0.01 Pa). The temperature was increased at a rate of 20 K/min to the heat-treatment temperature and maintained for 10 hours, after which the specimens were furnace cooled. After heat-treatment, weight of heat-treated specimens was carefully measured by an electronic balance. In order to reveal the microstructural change in heat-treated specimen, X-ray diffractometry and microstructure observation were performed and compared with those of the as-fabricated one.
Different time-dependent mechanisms such as creep, environmental surface oxidation or internal material degradation due to aging and irradiation will subject structures to the possibility of premature failures. In this paper a micro-scale finite element mesh consisting of multiple elements encased in ~50–150μm sized grains with designated grain boundaries is used to replicate shapes and dimensions to simulate an isotropic metallic microstructure. The grains are encased in pseudo-grain boundary element sets which can have different material and damage parameters compared to the grains. In this type of mesh random crack paths for intergranular and transgranular cracking conditions are allowed. It is shown that creep cracking using a uniaxial ductility constraint-based model coupled with a functionally distributed time-dependent environmentally assisted corrosion/oxidation/material degradation damage model acting on surface or internally can be realistically predicted using this model. It is also evident material properties input data have scatter especially at the sub-grain level where the measurement methods are new and not always standardised. This is dealt with in the model by employing a normal distributive probabilistic method to allow for statistically varied random damage and crack growth development. In this way it is possible to take into account the inherent variability in material input properties at the analysis stage without the need to change material properties following each run. The method could negate the need for knowing the exact material properties, which in any case is impossible to derive at the microstructural level, as results of each run can be varied using a statistically distributed critical damage criterion specified for each element.