Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The results of recent studies on the optical limiting properties of BODIPY dyes at 532 and 1064 nm are described and compared. The optical limiting properties of novel 1,7-dimethyl-3,5-di-4-dihydroxyborylstyryl- and 3,5,7-tristyryl-1-methyl-BODIPY dyes were studied in CH2Cl2 and C6H6 and polystyrene thin films using the open aperture Z-scan technique at 532 nm with nanosecond laser pulses to provide an example of how the effective nonlinear absorption coefficient, the third order susceptibility, hyperpolarizability and limiting thresholds can be calculated.
The synthesis and characterization of a novel dibrominated 1,3,5-tristyrylBODIPY dye is reported, and its potential utility as a singlet oxygen photosensitizer and optical limiting material is assessed. The main spectral band lies in the therapeutic window, and there is a moderately high singlet oxygen quantum yield making the dye potentially suitable for use in biomedical applications and as an optical limiting dye at 532 nm. The optical limiting parameters are comparable to those reported previously for 3,5-distyrylBODIPYs, which suggests that mixtures of 3,5-distyryl and 1,3,5-tristyryl compounds that are formed in Knoevenagel condensation reactions could be used for this application. Theoretical calculations are used to assess the effect of 1,3,5-tristyryl substitution. A smaller red shift of the main spectral band is observed upon styrylation at the 1-position than is the case with the 3,5-positions due to there being smaller MO coefficients at this position, limiting the utility of this structural modification method for shifting the main BODIPY spectral band further into the therapeutic window.