Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Engineered Nanoparticles Induce DNA Damage in Primary Human Skin Cells, Even at Low Doses

    Nano LIFE01 Mar 2014

    It is well documented that various particulate matter — either incidental or engineered — are known to generate reactive oxygen species (ROS) in living cells. In circumstances where these reactive species are generated, antioxidant production is often increased. This balance in the biological reduction/oxidation (a.k.a. redox) state within the cell has not been thoroughly studied in exposures involving engineered nanoparticles. However, nanoparticle exposure has been postulated to induce a DNA damage cascade. In this study, we examined primary human dermal fibroblasts (HDF) exposed to three different, but commonly used engineered nanoparticles (i.e., cerium dioxide (CeO2), titanium dioxide (TiO2) and zinc oxide (ZnO)) in an attempt to determine the potential DNA damaging effects through the analysis of ROS generation, relevant protein upregulation response and single and double DNA strand breaks. Cell death was most elevated with exposure to ZnO, followed by TiO2 and CeO2. ROS generation was measured at 1 h, 6 h and 24 h after exposure to particles via a cell-based DCFH-DA (2′, 7′-dichlorfluorescein-diacetate) assay and indicated that ZnO generated the most significant amount of ROS. ZnO also caused upregulation of oxidative stress protein, heme oxygenase-1 and phosphorylation of p38; whereas CeO2 caused upregulation of superoxide dismutase. Results from the comet assay indicated that ZnO triggered significant DNA damage in cells at relatively low dosing concentrations (20 ppm). Immunocytochemistry with ZnO-treated cells revealed notable DNA double strand breaks evidenced by a marked increase in the presence of γ-H2AX foci. This finding was also indicated by western blot, as well as cell cycle arrest by the phosphorylation of cyclin-dependent kinase 1. These data suggest that the three particle-types induce different degrees of DNA damage. And, of the three particle-types tested, exposure to ZnO nanoparticles may cause the most significant DNA damage.