Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We have systematically studied the composition dependence of the dielectric properties of Zr1-xAlxO2-x/2 and Zr1-xSixO2. An essentially linear variation of the static dielectric constant, εs, was observed as a function of composition, x, for compositions rich in the p-block element, i.e., x > 0.4, for both chemical systems. However an abrupt change in εs is found near x ≈ 0.35, associated with the onset of crystallinity in as-deposited films. Breakdown fields do not show a comparable composition dependence. Measurements of the index of refraction at optical frequencies, combined with a simple Clausius–Mossotti interpretation, indicates that low-frequency (ionic) contributions to the polarizability exhibit systematic deviation with respect to values linearly interpolated from the endmembers. These trends are not consistently affected by the presence of crystalline order, but are related to changes associated with heterogeneous local oxygen coordination and bonding.
Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.