Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Charge transfer modeling in monolayer circular graphene quantum dots–ZnO nanowires system for application in photovoltaic devices

    We investigate electron transport between circular graphene quantum dots (CGQDs) and ZnO nanowires (ZnO NWs). This structure can be used as donor and acceptor in hybrid solar cells. We consider circular quantum dots (QDs) and use analytical calculation in order to estimate wavefunctions of GQD and ZnO NWs. After calculating the wavefunctions overlap, we use Marcus relation in order to calculate electron transfer rate. Also, we calculate this transfer rate for CdSe QDs–ZnO NWs system. Results from analytical calculation show that the transfer rate is limited to 1013 s1. This result is in agreement with experimental results which are reported earlier. Such systems could be suitable for solar cells.