Please login to be able to save your searches and receive alerts for new content matching your search criteria.
ZnS nanofibers with lamellar mesostructure could be built up from in situ generated ZnS precursors via hydrothermal routes using neutral n-alkylamines as structure-directing template and ethylene diamine tetraacetic acid (EDTA) as stabilizer. The morphology and structure of the obtained products were thoroughly investigated via scanning electron microscope (SEM), energy dispersive analysis of X-rays (EDX), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and thermal analyses. HRTEM and XRD results revealed that the so-produced nanofibers were lamellar mesostructure and its framework was built of crystalline wurtzite ZnS. It was also found that the distance between the layers was proportional to the chain length of the alkylamine. The UV-visible absorption spectrum showed that the nanofibers exhibited strong quantum-confined effect with a blue shift in the band gap. Finally, a probable mechanism for the assembly of the nanofibers was also proposed.