Electrocardiogram (ECG) signals might be affected by various artifacts and noises that have biological and external sources. Baseline wander (BW) is a low-frequency artifact that may be caused by breathing, body movements and loose sensor contact. In this paper, a novel method based on empirical mode decomposition (EMD) for removal of baseline noise from ECG is presented. When compared to other EMD-based methods, the novelty of this research is to reach the optimized number of decomposed levels for ECG BW de-noising using mean power frequency (MPF), while the reduction of processing time is considered. To evaluate the performance of the proposed method, a fifth-order Butterworth high pass filtering (BHPF) with cut-off frequency at 0.5Hz and wavelet approach are applied. Three performance indices, signal-to-noise ratio (SNR), mean square error (MSE) and correlation coefficient (CC), between pure and filtered signals have been utilized for qualification of presented techniques. Results suggest that the EMD-based method outperforms the other filtering method.