World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Analysis on Gaussian Spaces cover
Also available at Amazon and Kobo

"Written by a well-known expert in fractional stochastic calculus, this book offers a comprehensive overview of Gaussian analysis, with particular emphasis on nonlinear Gaussian functionals. In addition, it covers some topics that are not frequently encountered in other treatments, such as Littlewood-Paley-Stein, etc. This coverage makes the book a valuable addition to the literature. Many results presented in this book were hitherto available only in the research literature in the form of research papers by the author and his co-authors."

Mathematical Reviews Clippings

Analysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of "abstract Wiener space".

Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn–Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincaré inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood–Paley–Stein–Meyer theory are given in details.

This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood–Paley–Stein–Meyer theory, and the Hörmander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.

Sample Chapter(s)
Chapter 1: Introduction (150 KB)


Contents:
  • Introduction
  • Garsia–Rodemich–Rumsey Inequality
  • Analysis with Respect to Gaussian Measure in ℝd
  • Gaussian Measures on Banach Space
  • Nonlinear Functionals on Abstract Wiener Space
  • Analysis of Nonlinear Wiener Functionals
  • Some Inequalities
  • Convergence in Density
  • Local Time and (Self-) Intersection Local Time
  • Stochastic Differential Equation
  • Numerical Approximation of Stochastic Differential Equation

Readership: Graduate students and researchers in probability and stochastic processes and functional analysis.