World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Discovery and Fusion of Uncertain Knowledge in Data cover
Also available at Amazon and Kobo

Data analysis is of upmost importance in the mining of big data, where knowledge discovery and inference are the basis for intelligent systems to support the real world applications. However, the process involves knowledge acquisition, representation, inference and data, Bayesian network (BN) is the key technology plays a key role in knowledge representation, in order to pave way to cope with incomplete, fuzzy data to solve the real-life problems.

This book presents Bayesian network as a technology to support data-intensive and incremental learning in knowledge discovery, inference and data fusion in uncertain environment.

Sample Chapter(s)
Chapter 1: Introduction (80 KB)


Contents:
  • Introduction
  • Data-Intensive Learning of Uncertain Knowledge
  • Data-Intensive Inferences of Large-Scale Bayesian Networks
  • Uncertain Knowledge Representation and Inference for Lineage Processing over Uncertain Data
  • Uncertain Knowledge Representation and Inference for Tracing Errors in Uncertain Data
  • Fusing Uncertain Knowledge in Time-Series Data
  • Summary

Readership: Graduate students, researchers and professionals in the field of artificial intelligence/machine learning and information sciences, especially in databases.