World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Ensemble Learning cover
Also available at Amazon and Kobo

This updated compendium provides a methodical introduction with a coherent and unified repository of ensemble methods, theories, trends, challenges, and applications. More than a third of this edition comprised of new materials, highlighting descriptions of the classic methods, and extensions and novel approaches that have recently been introduced.

Along with algorithmic descriptions of each method, the settings in which each method is applicable and the consequences and tradeoffs incurred by using the method is succinctly featured. R code for implementation of the algorithm is also emphasized.

The unique volume provides researchers, students and practitioners in industry with a comprehensive, concise and convenient resource on ensemble learning methods.

Sample Chapter(s)
Chapter 1: Introduction to Machine Learning


Contents:
  • Introduction to Machine Learning
  • Classification and Regression Trees
  • Introduction to Ensemble Learning
  • Ensemble Classification
  • Gradient Boosting Machines
  • Ensemble Diversity
  • Ensemble Selection
  • Error Correcting Output Codes
  • Evaluating Ensembles of Classifiers

Readership: Professionals, researchers, academics, and graduate students in artificial intelligence, databases and machine learning.