Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Basics of Statistical Physics cover
IMPORTANT!
This ebook can only be accessed online and cannot be downloaded. See further usage restrictions.
Also available at Amazon and Kobo

Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging.

This introduction to statistical physics concentrates on the basic principles and attempts to explain these in simple terms, supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell–Boltzmann, Fermi–Dirac, Bose–Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin–Fowler method.

Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose–Einstein condensation. In this latest edition, apart from a general revision, the topic of thermal radiation has been expanded with a new section on black bodies and an additional chapter on black holes. Other additions are more examples with applications of statistical mechanics in solid state physics and superconductivity. Throughout the presentation, the introduction carries almost all details for calculations.

Request Inspection Copy

Sample Chapter(s)
Preface to Third Edition, Second Edition and First Edition
Chapter 1: Introduction

Contents:
  • Introduction
  • Statistical Mechanics of an Ideal Gas (Maxwell)
  • The a priori Probability
  • Classical Statistics (Maxwell–Boltzmann)
  • Entropy
  • Quantum Statistics
  • Exact Form of Distribution Functions
  • Application to Radiation (Light Quanta)
  • Debye Theory of Specific Heat of Solids
  • Electrons in Metals
  • Limitations of the Preceding Theory — Improvement with Ensemble Method
  • Averaging instead of Maximization, and Bose–Einstein Condensation
  • The Boltzmann Transport Equation
  • Thermal Radiation of Black Holes
Readership: Advanced undergraduates, graduate students and academics interested in statistical physics.