World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Gröbner–Shirshov Bases cover
Also available at Amazon and Kobo

 

The book is about (associative, Lie and other) algebras, groups, semigroups presented by generators and defining relations. They play a great role in modern mathematics. It is enough to mention the quantum groups and Hopf algebra theory, the Kac–Moody and Borcherds algebra theory, the braid groups and Hecke algebra theory, the Coxeter groups and semisimple Lie algebra theory, the plactic monoid theory. One of the main problems for such presentations is the problem of normal forms of their elements. Classical examples of such normal forms give the Poincaré–Birkhoff–Witt theorem for universal enveloping algebras and Artin–Markov normal form theorem for braid groups in Burau generators.

What is now called Gröbner–Shirshov bases theory is a general approach to the problem. It was created by a Russian mathematician A I Shirshov (1921–1981) for Lie algebras (explicitly) and associative algebras (implicitly) in 1962. A few years later, H Hironaka created a theory of standard bases for topological commutative algebra and B Buchberger initiated this kind of theory for commutative algebras, the Gröbner basis theory. The Shirshov paper was largely unknown outside Russia. The book covers this gap in the modern mathematical literature. Now Gröbner–Shirshov bases method has many applications both for classical algebraic structures (associative, Lie algebra, groups, semigroups) and new structures (dialgebra, pre-Lie algebra, Rota–Baxter algebra, operads). This is a general and powerful method in algebra.

 

Sample Chapter(s)
Preface
Chapter 1: Introduction

 

Contents:

  • Introduction
  • Free Algebras
  • Composition-Diamond Lemma
  • Applications of Gröbner–Shirshov Bases
  • Gröbner–Shirshov Bases for Lie Algebras Over a Commutative Algebra
  • Decision Problems for Groups
  • (Co)Homology and Gröbner–Shirshov Basis

 

Readership: Researchers in algebra and combinatorics.