World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Chemical Theory beyond the Born-Oppenheimer Paradigm cover
Also available at Amazon and Kobo

This unique volume offers a clear perspective of the relevant methodology relating to the chemical theory of the next generation beyond the Born-Oppenheimer paradigm. It bridges the gap between cutting-edge technology of attosecond laser science and the theory of chemical reactivity. The essence of this book lies in the method of nonadiabatic electron wavepacket dynamic, which will set a new foundation for theoretical chemistry.

In light of the great progress of molecular electronic structure theory (quantum chemistry), the authors show a new direction towards nonadiabatic electron dynamics, in which quantum wavepackets have been theoretically and experimentally revealed to bifurcate into pieces due to the strong kinematic interactions between electrons and nuclei.

The applications range from nonadiabatic chemical reactions in photochemical dynamics to chemistry in densely quasi-degenerated electronic states that largely fluctuate through their mutual nonadiabatic couplings. The latter is termed as “chemistry without the potential energy surfaces” and thereby virtually no theoretical approach has been made yet.

Restarting from such a novel foundation of theoretical chemistry, the authors cast new light even on the traditional chemical notions such as the Pauling resonance theory, proton transfer, singlet biradical reactions, and so on.

Sample Chapter(s)
Chapter 1: The Aim of This Book: Where Are We? (100 KB)


Contents:
  • The Aim of This Book: Where are We?
  • Basic Framework of Theoretical Chemistry
  • Nuclear Dynamics on Adiabatic Electronic Potential Energy Surfaces
  • Breakdown of the Born–Oppenheimer Approximation: Classic Theories of Nonadiabatic Transitions and Ideas Behind
  • Direct Observation of the Wavepacket Bifurcation Due to Nonadiabatic Transitions
  • Nonadiabatic Electron Wavepacket Dynamics in Path-branching Representation
  • Dynamical Electron Theory for Chemical Reactions
  • Molecular Electron Dynamics in Laser Fields

Readership: Graduate students, professional scientists in theoretical chemistry, quantum chemistry, chemical dynamics, nonadiabatic transition, molecular physics, electron dynamics, and experimentalists in laser chemistry (including ultrafast chemical dynamics), photochemistry, laser control of chemical reactions, and scientists working in physical chemistry and chemical physics in general.