World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Geometric Mechanics cover

This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics and engineering. It treats the dynamics of ray optics, resonant oscillators and the elastic spherical pendulum from a unified geometric viewpoint, by formulating their solutions using reduction by Lie-group symmetries. The only prerequisites are linear algebra, calculus and some familiarity with the Euler–Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.

The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie–Poisson Hamiltonian formulations and momentum maps in physical applications.

The many Exercises and Worked Answers aid the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.

The book's many worked exercises make it ideal for both classroom use and self-study. In particular, a substantial appendix containing both introductory examples and enhanced coursework problems with worked answers is included to help the student develop proficiency in using the powerful methods of geometric mechanics.

Sample Chapter(s)
Chapter 1: Fermat's ray optics (2,685 KB)

Request Inspection Copy


Contents:
  • Fermat's Ray Optics
  • Newton Lagrange, Hamilton
  • Differential Forms
  • Resonances and S1 Reduction
  • Elastic Spherical Pendulum
  • Maxwell-Bloch Equations

Readership: Advanced undergraduate and graduate students in mathematics, physics and engineering; researchers interested in learning the basic ideas in the field; non-experts interested in geometric mechanics, dynamics and symmetry.